溴化铈闪烁探测器双能定向γ辐射取样 技术研究

刘洪武 葛良全 吴霁桐 杨小峰 邓志鹏 唐传丰 熊茂淋 (地学核技术四川省重点实验室(成都理工大学) 成都 610059)

摘要 定向获取放射性待测体中放射性元素含量或放射性活度是地质勘查和放射性污染调查的一项重要工作。在定向γ辐射取样过程中,非待测体区域γ射线对测量结果形成极大干扰。本文基于同一放射性衰变系列中高、低能量γ射线在溴化铈闪烁探测器铅屏蔽层中线性衰减系数的差异,设计了一种溴化铈闪烁探测器双能定向γ辐射取样探头。当以²¹⁴Bi放出的0.609 MeV、1.764 MeV γ射线为探测对象时,使用蒙特卡罗(Monte Carlo,MC)数值模拟得出双能定向γ辐射取样探头的最佳铅屏蔽层厚度为6 mm,定向比例系数为*a*=0.268、*A*=0.451。经4种干扰辐射体蒙特卡罗数值模拟和两个镭源物理实验验证表明,采用该定向比例系数得到的双能γ辐射探头铅屏蔽张角以内0.609 MeV 的γ射线计数值与MC模拟值的平均相对误差为0.63%;经两个镭源物理实验验证表明,张角以内的0.609 MeV γ射线计数值与实测值的相对误差为±2.52% 以内。在放射性混合标准模型和三个放射性模型上进行双能定向γ辐射取样结果表明,设计的新型双能定向γ辐射取样探头具有定向γ辐射取样功能,实测模型中铀含量与模型推荐值的相对误差均小于5%。 关键词 双能定向γ辐射取样技术,铀矿勘查,定向比例系数

中图分类号 TL99

DOI: 10.11889/j.0253-3219.2023.hjs.46.120401

Dual-energy targeted gamma radiation sampling technique based on cerium bromide scintillation detector

LIU Hongwu GE Liangquan WU Jitong YANG Xiaofeng DENG Zhipeng TANG Chuanfeng XIONG Maolin

(Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province (Chengdu University of Technology), Chengdu 610059, China)

Abstract [Background] The targeted acquisition of the radioactive element content or radioactivity in a radioactivity is an important task in geological exploration and radioactive pollution investigation. During the process of targeted gamma radiation sampling, gamma rays from non-target areas significantly interfere with the measurement results. [Purpose] This study aims to design a dual-energy targeted gamma radiation sampling probe that uses a cerium bromide scintillation detector on the basis of the difference in the linear attenuation coefficients of the high- and low-energy gamma rays from the same radioactive decay series in the lead shielding layer of the detector. [Methods] Firstly, Monte Carlo (MC) numerical simulations were employed to determine the optimal lead shielding layer thickness for the dual-energy targeted gamma radiation sampling probe detecting targets of the

国家重点研发计划项目(No.2017YFC0602105)、四川省科技计划项目(No.2020YJ0334)资助

第一作者: 刘洪武, 男, 1995年出生, 2019年毕业于成都理工大学工程技术学院, 现为硕士研究生, 研究领域为核技术及应用

通信作者: 葛良全, E-mail: glq@cdut.edu.cn

收稿日期: 2023-06-28, 修回日期: 2023-08-17

Supported by the National Key Research and Development Program Project (No.2017YFC0602105), the Sichuan Province Science and Technology Plan Project (No.2020YJ0334)

First author: LIU Hongwu, male, born in 1995, graduated from the Engineering & Technical College of Chengdu University of Technology in 2019, master student, focusing on nuclear technology and application

Corresponding author: GE Liangquan, E-mail: glq@cdut.edu.cn

Received date: 2023-06-28, revised date: 2023-08-17

0.609 MeV and 1.764 MeV gamma rays emitted by ²¹⁴Bi. Then, the directional proportionality coefficients were calculated and applied to obtaining 0.609 MeV gamma ray counts of dual energy γ radiation probe within lead shielded angle. Finally, MC numerical simulations with four types of interfering radiation sources and physical experiments with two radium sources were conducted to validate the results that calculated using the directional proportionality coefficients. **[Results]** The simulation result of optimal lead shielding layer thickness for the dual-energy targeted gamma radiation sampling probe is 6 mm, and the calculated directional proportionality coefficients of *a* and *A* are 0.268 and 0.451, respectively. Validation results show that the relative error between the counts for the 0.609 MeV gamma radiation sampling probe for two radium sources is within ±2.52% with average relative error of 0.63%. The relative errors between the measured uranium content and recommended values in the tested models are all less than 5%. **[Conclusions]** The dual-energy targeted gamma radiation sampling probe indicated that the designed dual-energy targeted gamma radiation sampling probe is not an aradiation sampling results for a radioactive mixed standard model and three radioactive models indicated that the designed dual-energy targeted gamma radiation sampling probe is capable of targeted gamma radiation sampling.

Key words Dual-energy targeted gamma radiation sampling technique, Uranium exploration, Directional proportionality coefficient

在现场快速获取放射性待测体中放射性元素含 量或放射性活度是地质勘查和放射性污染调查的一 项重要工作[1-2]。从取样的手段与方式角度,可分为 野外取样-室内分析方法和现场辐射取样方法[3]。 野外取样-室内分析方法是在野外对放射性待测体 取样,样品经加工与处理,在室内采用物理仪器或化 学分析方法获取样品中放射性元素含量或放射性核 素的放射性活度浓度。现场辐射取样方法是利用核 辐射测量仪器在野外现场对待测体进行原位测量, 实时获取放射性元素含量或放射性核素活度浓度。 由于 α 射线和 β 射线在介质中穿透深度小,基于 α 射 线或β射线的现场辐射取样方法主要用于表面放射 性污染物的测定^[4]。γ射线具有较强的穿透深度,基 于γ射线的辐射取样方法被广泛用于铀矿勘探和放 射性污染调查中铀含量或放射性核素比活度测 定[5-10]。在γ辐射取样中,由于γ射线探测器接收到 待测体放射性核素放出的特征γ射线外,还受到周 围介质放出的γ射线的干扰,这是γ辐射取样方法必 须解决的技术难题。传统的γ辐射取样方法采用 无、有铅屏蔽层条件下的两次γ测量的差值法,实现 对周围γ射线背景干扰的测量^[11-12]。FD-42定向γ辐 射仪采用碘化钠闪烁探测器和塑料闪烁探测器(包 裹在碘化钠晶体周围)相符合的方法,实现γ辐射取 样的定向测量^[3]。吴德宪分析了γ能谱双重定向辐 射取样的工作原理,提出U-Th混合矿床的辐射取样 方法^[13]。杨京科等报道了基于 Nal(Tl)闪烁探测器 的双能定向γ射线测量方法,通过测定两种不同能 量γ射线的强度,实现γ射线的定向测量[14]。本文以 具有较高能量分辨率的溴化铈闪烁计数器为γ射线 探测器(能量分辨率为4.5%左右@0.662 MeV射 线),采用蒙特卡罗数值模拟和两个镭源物理实验,

确定双能溴化铈闪烁定向探头的最佳屏蔽层厚度和 定向比例系数,在放射性标准模型上开展基于溴化 铈闪烁探测器的双能定向γ辐射取样仪的铀含量标 定,并进行实验验证。

双能定向γ辐射取样探头结构与γ辐射取 样数理模型

1.1 双能定向γ辐射取样探头结构

双能定向γ辐射取样是通过测定铀系列或钍系 列放射性核素放出的两种不同能量γ射线的强度, 来实现对待测体中铀含量或钍含量定量分析的物理 方法。基于溴化铈闪烁探测器双能γ能谱探头结构 如图1所示,其中晶体部分为圆柱形溴化铈晶体 (ø45 mm×50 mm),外部和顶部包裹一定厚度的铅 屏蔽层,且屏蔽层相对于溴化铈晶体下表面延长 5 cm,形成一定的定向探测立体角。通过设置不同 的探头与待测体表面的距离,可确定待测体的探测 范围。

图1 溴化铈闪烁探测器双能定向γ辐射取样探头 结构示意图

1.2 双能定向γ辐射取样数理模型

以铀系列中²¹⁴Bi产生的0.609 MeV、1.764 MeV γ射线为例,溴化铈闪烁探测器接收的1.764 MeV和 0.609 MeVγ射线的总强度可分解为铅屏蔽角内侧 和铅屏蔽角外侧两个部分。于是,在溴化铈闪烁γ 能谱仪的仪器谱上,1.764 MeV和0.609 MeV的γ射 线全能峰净峰面积计数*N*_{LSum}和*N*_{2Sum}可表示为:

$$N_{1,\text{Sum}} = N_{1,\text{In}} + N_{1,\text{Out}} \tag{1}$$

$$N_{2,\rm Sum} = N_{2,\rm In} + N_{2,\rm Out} \tag{2}$$

式中: $N_{1,In}$ 和 $N_{2,In}$ 分别为溴化铈闪烁探头铅屏蔽张角 以内的1.764 MeV 和 0.609 MeV γ 射线对 $N_{1,Sum}$ 和 $N_{2,Sum}$ 的贡献; $N_{1,Out}$ 和 $N_{2,Out}$ 分别为溴化铈闪烁探头铅 屏蔽张角以外的1.764 MeV 和 0.609 MeV γ 射线对 $N_{1,Sum}$ 和 $N_{2,Sum}$ 的贡献。

假设:

$$\frac{N_{\rm l,ln}}{N_{\rm 2,ln}} = a \tag{3}$$

$$\frac{N_{1,\text{Out}}}{N_{2,\text{Out}}} = A \tag{4}$$

式中:a和A称为定向比例系数。其中,a为仪器谱上来自于溴化铈闪烁探头铅屏蔽张角以内的 1.764 MeV和0.609 MeVγ射线净峰面积计数的比值,该比值取决于待测体中²¹⁴Bi放出的1.764 MeV 和0.609 MeVγ射线的分支比,且与溴化铈闪烁双能 定向γ辐射取样仪对1.764 MeV和0.609 MeV的γ射 线的源-峰探测效率有关;A为仪器谱上来自于溴化 铈闪烁探头铅屏蔽张角以外的1.764 MeV和 0.609 MeVγ射线净峰面积计数的比值,显然该比值 不仅与源-峰探测效率有关,而且还与包裹探测器的 铅屏蔽层厚度有关。

将式(3)和式(4)代入式(1)和式(2),并经整理 可得:

$$N_{1,\text{In}} = \frac{a(N_{1,\text{Sum}} - AN_{2,\text{Sum}})}{a - A}$$
(5)

$$N_{2,\rm In} = \frac{N_{1,\rm Sum} - A N_{2,\rm Sum}}{a - A} \tag{6}$$

式(5)和式(6)表明,在双能定向 γ 辐射取样仪的仪器谱上通过1.764 MeV和0.609 MeV的 γ 射线全能峰净峰面积计数($N_{1,sum}$ 和 $N_{2,sum}$)可以获得探头铅屏蔽张角以内1.764 MeV或0.609 MeV的 γ 射线的贡献份额($N_{1,ln}$ 或 $N_{2,ln}$),从而实现定向 γ 辐射取样。

对无限厚、无限大均匀含铀层且铀系列处于放射性平衡状态的待测体,其铀含量与²¹⁴Bi放出的 0.609 MeV、1.764 MeV γ射线强度呈正比例关 系^[3,15],于是有:

$$C_{\rm u} = k_1 \cdot N_{\rm 1,In} + b_1 \tag{7}$$

 $C_{\rm U} = k_2 \cdot N_{2,\rm In} + b_2 \tag{8}$

式中: $C_{\rm U}$ 为待测体中铀含量: $k_1 \ b_1 \ k_2 \ n \ b_2$ 为双能定向 γ 辐射取样仪的铀含量标定系数。因此,探头铅 屏蔽张角以内待测体铀含量可通过双能定向 γ 辐射 取样仪器谱上的 1.764 MeV 和 0.609 MeV γ 射线全 能峰净峰面积($N_{\rm Lsun}$ 和 $N_{\rm 2sun}$)计算得到。

2 定向比例系数

2.1 蒙特卡罗几何模型构建

双能定向γ辐射取样仪探头的铅屏蔽层厚度、 定向比例系数和1.764 MeV与0.609 MeV的γ射线 的源-峰探测效率均可采用蒙特卡罗数值模拟得到。 根据图1双能定向γ辐射取样仪探头的设计,蒙特卡 罗数值模拟的几何模型如图2所示。图2中圆柱形 溴化铈晶体大小为ø45 mm×50 mm,晶体外壳包裹 3 mm厚Al,Al壳外再包裹铅屏蔽层,铅屏蔽层相对 于探测器底面延长5 cm。探测器放置在待测体模 型上,探测器中轴线与待测体中轴线重合,探测器底 面与待测体上表面距离为50 cm。目标为圆台形状 土壤介质,粒子数为3.621 52×10°,上底面半径(R_1) 46.25 cm、高(H) 30.6 cm、下底面半径(R_2) 75.35 cm。

图2 双能γ辐射取样仪探头蒙特卡罗数值模拟几何模型示意图
 Fig.2 Diagram of Monte Carlo numerical simulation

geometric model for dual energy γ radiation sampling probe

2.2 定向比例系数确定

采用 MCNP 蒙特卡罗软件,使用 F8 卡得出计数,模拟铅屏蔽层厚度为3 mm、4 mm、5 mm、6 mm 和7 mm条件下双能定向γ辐射取样仪探头的γ射线 沉积能谱。图3为铅屏蔽层为3 mm 溴化铈闪烁双 能定向γ辐射取样仪蒙特卡罗模拟沉积能谱图。从图3可看出 1.764 MeV 和 0.609 MeV 的γ射线全能峰,且后者的计数 N_{2sm} 显著高于前者 N_{1sum},故选定

式(6)和式(8)进行演算。表1是不同厚度铅屏蔽层 定向比例系数的蒙特卡罗数值模拟结果。表1中定 向比例系数a和A是根据蒙特卡罗数值模拟获得的 $N_{1,ln}$ 、 $N_{2,ln}$ 、 $N_{1,out}$ 、 $N_{2,out}$ 由式(3)和式(4)计算得到。

表1 不同厚度铅屏蔽层定向比例系数蒙特卡罗数值模拟结果 Table 1 Monte Carlo numerical simulation results for directional scale coefficients of lead shielding layers with different thicknesses

屏蔽层厚度 Shielding	$N_{\rm 2,In}$	$N_{ m 1,In}$	定向比例系数	$N_{2,\mathrm{Out}}$	$N_{\rm 1,Out}$	定向比例系数
thickness / mm			Directional roportion	onal		Directional proportional
			coefficient a			coefficient A
3	957	257	0.268	920	276	0.300
4	957	257	0.268	687	240	0.349
5	957	257	0.268	526	208	0.396
6	957	257	0.268	392	177	0.451
7	957	257	0.268	294	156	0.529

图3 铅屏蔽层为6 mm溴化铈闪烁双能定向γ辐射取样仪 MC模拟沉积能谱图

Fig.3 MC simulated deposition energy spectra for 6 mm lead shield of dual-energy targeted γ radiation sampler with cerium bromide scintillation detector

2.3 定向比例系数 MC 模拟验证

为了验证表1中定向比例系数的准确性,设置 了4个带干扰辐射源的待测体,如图4所示。图4(a) 是在待测体外围包裹了10 cm 厚的同体积下发射粒 子数为待测体两倍的干扰辐射源:图4(b)是在图4 (a)的外围又包裹了10 cm 厚的同体积下发射粒子 数为待测体两倍的干扰辐射源;图4(c)和(d)是在待 测体外半圆周分别包裹了一层和二层的10 cm 厚的 同体积下发射粒子数为待测体两倍的干扰辐射源。 表2是对4种干扰辐射源待测体条件下溴化铈闪烁 探测器双能γ辐射探头铅屏蔽张角以内的 0.609 MeV γ射线计数 N₂₁ MC模拟值与计算值的比 较。表2中N_{1.sum}和N_{2.sum}是溴化铈闪烁探测器包裹 3 mm、4 mm、5 mm、6 mm 和7 mm 铅屏蔽层厚度条 件下,蒙特卡罗数值模拟获得溴化铈闪烁探测器上 1.764 MeV 和 0.609 MeV 的 γ 射线能量沉积的光子 计数;表2中第5列N21模拟值是将包裹探测器的铅 屏蔽层设置为50 mm,则探头铅屏蔽张角以外的 0.609 MeVγ射线进入溴化铈探测器的份额仅为 0.03%,在此条件下获得的溴化铈闪烁探测器上的 0.609 MeVγ射线能量沉积的光子计数,显然,该计 数仅为探头铅屏蔽张角以内的0.609 MeVγ射线贡 献;表2中第6列N_{2,In}计算值是根据表2中N_{1,Sum}、N_{2,Sum} 值和表1中定向比例系数值由式(6)计算得到的;表 2中第7列是N_{2,In}计算值与模拟值的相对误差。 从表2可看出,N_{2,In}计算值与模拟值的相对误差最大 值仅为-5.59%,表明表1的定向比例系数值具有较 高的准确性。根据4个带干扰辐射源待测体的蒙特 卡罗数值模拟结果,当以0.609 MeV的γ射线为测量 对象时,双能定向γ辐射取样仪探头的铅屏蔽层厚 度为6 mm时,N_{2,In}计算值与模拟值的相对误差最小, 其平均值为0.63%。

2.4 定向比例系数物理实验验证

为了进一步验证表1中定向比例系数的准确 性,采用两个标准镭源用双能定向γ辐射取样仪进 行测量。镭源为直径1.5 cm的柱状密封源,出厂日 期为1958年,出厂活度为1.88×10⁷ Bq。进行两个镭 源实验时,双能定向γ辐射取样仪探头铅屏蔽层为 6 mm,其中一个镭源放置在溴化铈探测器正前方 0.6 m、0.9 m、1.2 m位置处,另一个镭源放置在侧右 方(与内前方成90°夹角)0.6 m、0.9 m、1.2 m位置处, 如图5所示。测量时间为600 s,逐次改变镭源位置, 测量不同测量点1.764 MeV和0.609 MeV的γ射线 全能峰净峰面积计数*N*_{1.8um}和*N*_{2.8um},结果如表3所示。 图 6 为溴化铈闪烁探测器双能定向γ辐射取样仪的 实测γ仪器谱图。

根据表3的数据和式(6),可计算出溴化铈闪烁

刘洪武等: 溴化铈闪烁探测器双能定向γ辐射取样技术研究

(a) 待测体外围包裹了10 cm厚的铀含量为待测体两倍干扰辐射源;(b) 待测体外围包裹了二层10 cm厚的铀含量为待测体两倍 干扰辐射源;(c) 待测体外围包裹了半圆周10 cm厚的铀含量为待测体两倍干扰辐射源;(d) 待测体外围包裹了二层半圆周 10 cm厚的铀含量为待测体两倍干扰辐射源

Fig.4 MC simulation geometry model with interfering radiation source target

(a) The outer perimeter of the target is wrapped with a 10 cm thick uranium layer, which is an interference source with twice the radiation of the target body; (b) The outer perimeter of the target is wrapped with two 10 cm thick uranium layers, which is an interference source with twice the radiation of the target body; (c) The outer circumference of the target is partially wrapped, and the uranium content is twice that of the target body, which is an interference source with twice the radiation of the target body; (d) The outer perimeter of the target is wrapped with two partial layers, and the 10 cm thick uranium layer is an interference source with twice the radiation of the target body; (d) The outer perimeter of the target is wrapped with two partial layers, and the 10 cm thick uranium layer is an interference source with twice the radiation of the target body.

图5 两个镭源双能定向γ辐射取样仪测量布置图Fig.5 Arrangement of dual-energy targeted gamma radiation sampling probe and two radium sources

探头铅屏蔽张角以内的 0.609 MeV γ 射线全能峰净峰面积计数 $N_{2,ln}$, 如表4 所示(标记为 $N_{2,ln}$ 计算值)。 表4中 $N_{2,ln}$ 实测值为溴化铈闪烁探测器外层包裹 50 mm 厚的铅屏蔽层时(可认为完全屏蔽来自探测 器外的 0.609 MeV γ 射线), 在双能定向 γ 辐射取样 仪的实测 γ 仪器谱上求解的 0.609 MeV γ 射线全能 峰净峰面积计数 $N_{2,sun}$ 。

Fig.6 Measured gamma spectrum of dual-energy targeted gamma radiation sampling instrument with cerium bromide scintillation detector and a 6 mm lead shielding layer

该两个镭源实验结果表明,铅屏蔽层厚度为 6 mm时, N_{2,In} 实测值与 N_{2,In} 计算值相对误差在 ±2.52%以内。

1 2,11	8					8
	屏蔽层厚度 Shielding	$N_{\rm 2,Sum}$	$N_{\rm 1,Sum}$	N _{2,In} 模拟值	N _{2,In} 计算值	相对误差
	thickness / mm			Analog value	Calculated value	Relative error / %
干扰辐射源为(a)	3	2 3 3 7	673	957	904	-5.59
The interference radiation source is (a)	4	2 0 2 2	626	957	989	3.33
	5	1 789	584	957	973	1.60
	6	1 602	544	957	976	1.98
	7	1 458	515	957	985	2.87
干扰辐射源为(b)	3	2 772	802	957	940	-1.80
The interference radiation source is (b)	4	2 379	757	957	914	-4.50
	5	2 077	700	957	954	-0.40
	6	1 843	658	957	949	-0.91
	7	1 662	616	957	1008	5.32
干扰辐射源为(c)	3	2 107	603	957	931	-2.80
The interference radiation source is (c)	4	1 833	561	957	973	1.66
	5	1 636	524	957	965	0.80
	6	1 476	489	957	967	0.99
	7	1 355	464	957	971	1.43
干扰辐射源为(d)	3	2 324	667	957	949	-0.90
The interference radiation source is (d)	4	2 012	627	957	936	-2.25
	5	1 780	583	957	955	-0.20
	6	1 596	546	957	953	-0.45
	7	1 457	514	957	983	2.66

表2 不同干扰辐射源待测体 N_{2.1n} MC 模拟值与计算值比较 Table 2 Comparison of N_{2.1n} MC analog values and calculated values for different interference radiation source targets

表3 铅屏蔽层为6 mm时两个镭源双能定向γ辐射取样仪测量结果

Table 3 Measurement results for dual-energy targeted gamma radiation sampling instrument with a 6 mm lead shielding layer and two radium sources

正面距离Frontal	侧面距离S	侧面距离 Side distance 0.6 m		rontal distance 0.9 m	侧面距离 Side distance 1.2 m		
distance / m	$\overline{N_{ m 1,Sum}}$	$N_{2,\mathrm{Sum}}$	N _{1,Sum}	$N_{2,\mathrm{Sum}}$	$\overline{N_{1,\mathrm{Sum}}}$	$N_{\rm 2,Sum}$	
0.6	40 816	126 263	40 106	124 055	40 940	126 650	
0.9	16 821	51 613	16 821	51 616	17 618	54 095	
1.2	11 085	33 770	10 732	32 673	10 630	32 354	

表4 两个镭源正、侧向布置下铅屏蔽张角内实测0.609 MeV γ射线全能峰净峰面积计数与计算值对比 Table 4 Comparison of the total net peak area of 0.609 MeV gamma rays measured in the lead shield angle under a positive and lateral arrangement of two radium sources and the calculated value

正面距离	侧面距离Side	distance 0.6 n	n	侧面距离 Side	distance 0.9 n	1	侧面距离Side	distance 1.2	m
Frontal	N _{2,In} 实验值	N _{2,In} 计算值	相对误差	N _{2,In} 实验值	N _{2,In} 计算值	相对误差	N _{2,In} 实验值	N _{2,In} 计算值	相对误差
distance	Experimental	Calculated	Relative	Experimental	Calculated	Relative	Experimental	Calculated	Relative
/ m	value	value	error / %	value	value	error / %	value	value	error / %
0.6	90 748	89 316	-1.58	88 714	87 750	-1.09	88 650	89 590	1.06
0.9	36 870	36 368	-1.36	37 394	36 370	-2.74	37 308	38 128	2.20
1.2	23 314	23 712	1.71	22 694	22 934	1.06	23 296	22 708	-2.52

3 双能定向γ辐射取样实验与结果分析

3.1 双能定向γ辐射取样仪标定系数

式(8)中双能定向γ辐射取样仪标定系数的确 定是在放射性标准模型上实现的,双能定向γ辐射 取样探头与模型相对位置如图7所示。分别测量了 钾标准模型(编号KY-6-II,推荐铀含量4.54g·t⁻¹)、 钍标准模型(编号ThY-0.04-II,推荐铀含量 9.23g·t⁻¹)和铀标准模型(编号UY-0.02-II、推荐铀含 量195.32g·t⁻¹),测量时间为200s,每个标准模型上 测量三次取平均值。测量1.764 MeV和0.609 MeV 的γ射线全能峰净峰面积计数 $N_{1,sum}$ 和 $N_{2,sum}$,结果如 表5所示。表5中 $N_{2,In}$ 是根据该表中 $N_{1,Sum}$ 和 $N_{2,Sum}$ 的数据和式(6)计算得到。

图 7 双能定向γ辐射取样探头与模型相对位置图 **Fig.7** Arrangement of dual-energy targeted gamma radiation sampling probe and uranium standard model

利用表 5 中 $N_{2,ln}$ 和 C_{U} 数据,依据式(8)进行拟合 得到:

$$C_{\rm II} = N_{2\,\rm In} \times 0.223 - 1.138 \tag{9}$$

此时 R²=0.99,由此可知,式(8)中 k₂=0.223, b₂=-1.138。

3.2 标定系数实验验证

标定系数的验证实验是在一个放射性混合标准

表5 测量结果 Table 5 Measurement results

$C_{\rm U}$ / g·t ⁻¹	$N_{\rm 1,Sum}$	$N_{\rm 2,Sum}$	$N_{\rm 2,In}$
195.32	678	1 859	880
9.23	412	935	50
4.54	198	447	22
	$ \begin{array}{c} C_{\rm U} / {\rm g} \cdot {\rm t}^{-1} \\ 195.32 \\ 9.23 \\ 4.54 \end{array} $	$\begin{array}{c} C_{\rm U} / {\rm g} \cdot {\rm t}^{-1} & N_{\rm 1,Sum} \\ \\ 195.32 & 678 \\ \\ 9.23 & 412 \\ \\ 4.54 & 198 \end{array}$	$\begin{array}{c cccc} C_{\rm U}/{\rm g}\!\cdot\!{\rm t}^{-1} & N_{\rm 1,Sum} & N_{\rm 2,Sum} \\ \hline 195.32 & 678 & 1\ 859 \\ 9.23 & 412 & 935 \\ 4.54 & 198 & 447 \end{array}$

模型和三个放射性模型上进行的。放射性混合标准 模型编号UThKY-0.007-0.021-3-II,铀含量推荐值为 63.9 g·t⁻¹;三个放射性模型分别为铀模型、钍模型和 钾模型,其铀含量推荐值分别为140.31 g·t⁻¹、 8.55 g·t⁻¹、3.01 g·t⁻¹。测量时间为200 s,每个模型上 测量三次取平均值,测量结果如表6所示。表6中 $N_{2,ln}$ 是根据该表中 $N_{1,sum}$ 和 $N_{2,sum}$ 的数据和式(6)计算 得到; $C_{\rm U}$ 计算值是根据表6中 $N_{2,ln}$ 和式(8)计算得到; 相对误差是表中 $C_{\rm U}$ 计算值与推荐值之间的相对误 差。放射性混合标准模型和放射性模型的实测结果 表明,双能定向γ辐射取样仪具有定向辐射取样功 能,对模型中实测铀含量与推荐值的相对误差均小 于5%。

表6 实验模型测量结果 Table 6 Experimental model measurement results

编号Number	C_{U} 推荐值 Recommended value / g·t ⁻¹	C_{U} 计算值 Calculated value / g·t ⁻¹	$N_{\rm 1,Sum}$	$N_{2,\mathrm{Sum}}$	$N_{\rm 2,In}$	相对误差 Relative error / %
UThKY-0.007-0.021-3-II	63.9	60.9	1 208	494	278	-4.69
UHGL-5	140.31	135.34	1 299	474	612	-3.54
ThHGL-4	8.55	8.90	821	362	45	4.06
KHGL-7	3.01	2.88	402	178	18	-4.45

4 结语

1)本文设计了新型双能γ辐射取样探头,该探 头采用高能量分辨率的溴化铈闪烁计数器为γ射线 探测器,采用铅屏蔽层屏蔽周围γ射线对定向辐射 取样的干扰。当以²¹⁴Bi放出的0.609 MeV、 1.764 MeVγ射线为探测对象时,采用蒙特卡罗数值 模拟得出双能γ辐射取样探头的最佳铅屏蔽层厚度 为6 mm,定向比例系数为*a*=0.268、*A*=0.451。经4种 干扰辐射体蒙特卡罗数值模拟和两个镭源物理实验 验证表明,根据该定向比例系数计算的双能γ辐射 探头铅屏蔽张角以内的0.609 MeVγ射线计数值与 MC模拟值的平均相对误差为0.63%;经两个镭源物 理实验验证表明,张角以内的0.609 MeVγ射线计数 值与实测值的相对误差为±2.52%以内。

2)在放射性混合标准模型和三个放射性模型上 进行双能γ辐射取样结果表明,设计的新型双能γ辐 射取样探头具有定向γ辐射取样功能,实测模型中 铀含量与模型推荐值的相对误差均小于5%。 作者贡献声明 刘洪武负责的数值模拟、物理实验、 数据处理与本文撰写;葛良全负责本文整体构思、探 头设计和理论指导;杨小峰负责探头电子线路单元 搭建;吴霁桐、邓志鹏、唐传丰、熊茂林参与物理实验 与数据处理。

参考文献

- 葛良全,熊盛青,曾国强.航空伽马能谱探测技术与应用[M].北京:科学出版社,2016.
 GE Liangquan, XIONG Shengqing, ZENG Guoqiang.
 Airborne gamma ray spectrum detection and application [M]. Beijing: Science Press, 2016.
- 2 熊超, 孙坤, 葛良全, 等. 基于分形逐层滤波的航空γ能 谱矿致异常信息识别方法[J]. 核技术, 2019, 42(1): 010201. DOI: 10.11889/j.0253-3219.2019.hjs.42.010201. XIONG Chao, SUN Kun, GE Liangquan, *et al.* A method for the identification of ore-caused anomalies information in the airborne γ-ray spectrum based on fractal filtering by

layers[J]. Nuclear Techniques, 2019, **42**(1): 010201. DOI: 10.11889/j.0253-3219.2019.hjs.42.010201.

- 3 章晔, 华荣洲, 石柏慎. 放射性方法勘查[M]. 北京: 原子 能出版社, 1990: 39 - 80.
 ZHANG Ye, HUA Rongzhou, SHI Boshen. Radioactive method exploration[M]. Beijing: Atomic Press, 1990: 39 - 80.
- 4 李周, 王瑞俊, 李鹏翔, 等. 放射性污染土壤分层取样检测[J]. 核电子学与探测技术, 2020, 40(5): 822 824. DOI: 10.3969/j.issn.0258-0934.2020.05.027.

LI Zhou, WANG Ruijun, LI Pengxiang, *et al.* Study on stratified sampling and detection of radioactive contaminated soil[J]. Nuclear Electronics & Detection Technology, 2020, **40**(5): 822 – 824. DOI: 10.3969/j.issn. 0258-0934.2020.05.027.

- 5 葛良全,曾国强,赖万昌,等.航空数字γ能谱测量系统的研制[J].核技术,2011,34(2):156-160.
 GE Liangquan, ZENG Guoqiang, LAI Wanchang, *et al.* The development of a digital airborne gamma-ray spectrometry[J]. Nuclear Techniques, 2011, 34(2): 156-160.
- 6 郭生良,向叶舟,葛良全,等.水体放射性在线监测系统 校准装置设计[J].核技术,2023,46(1):010401.DOI:10. 11889/j.0253-3219.2023.hjs.46.010401.

GUO Shengliang, XIANG Yezhou, GE Liangquan, *et al.* Design of calibration device for real-time on-line monitoring system of water radioactivity[J]. Nuclear Techniques, 2023, **46**(1): 010401. DOI: 10.11889/j.0253-3219.2023.hjs.46.010401.

 7 熊茂淋,张庆贤,张建,等.多能量γ射线源屏蔽下活度 估算方法研究[J].核技术,2020,43(11):110203. DOI: 10.11889/j.0253-3219.2020.hjs.43.110203.
 XIONG Maolin, ZHANG Qingxian, ZHANG Jian, et al.

Study on the activity estimation method of shielded multienergy gamma-ray sources[J]. Nuclear Techniques, 2020, **43**(11): 110203. DOI: 10.11889/j.0253-3219.2020.hjs.43. 110203.

8 吴和喜, 葛良全, 魏强林, 等. 航空γ能谱仪无源效率刻 度方法研究[J]. 核技术, 2016, **39**(12): 120202. DOI: 10. 11889/j.0253-3219.2016.hjs.39.120202.

WU Hexi, GE Liangquan, WEI Qianglin, *et al.* Methodology study on the sourceless efficiency calibration of airborne gamma-ray spectrometry[J]. Nuclear Techniques, 2016, **39**(12): 120202. DOI: 10. 11889/j.0253-3219.2016.hjs.39.120202.

9 郭生良, 熊茂淋, 葛良全, 等. 水体在线放射性测量系统

阵列溴化铈闪烁探测装置优化[J]. 核技术, 2021, 44 (11): 110203. DOI: 10.11889/j. 0253-3219.2021. hjs. 44. 110203.

GUO Shengliang, XIONG Maolin, GE Liangquan, *et al.* Optimization of array CeBr₃ scintillation detection device for water on-line radioactivity measurement system[J]. Nuclear Techniques, 2021, **44**(11): 110203. DOI: 10. 11889/j.0253-3219.2021.hjs.44.110203.

- 10 许淑艳, 刘保杰. 核技术应用研究中的蒙特卡罗计算问题[J]. 核技术, 2007, 30(7): 597 600.
 XU Shuyan, LIU Baojie. Monte Carlo computation in the applied research of nuclear technology[J]. Nuclear Techniques, 2007, 30(7): 597 600.
- 11 胡波,张文字,杨奎,等. MCNP程序在坑道定向γ能谱 探测技术中的应用研究[J].核电子学与探测技术,2015, 35(2): 146 - 149. DOI: 10.3969/j.issn.0258-0934.2015. 02.008.

HU Bo, ZHANG Wenyu, YANG Kui, *et al.* Applied research in the trenches directional γ spectroscopy detection techniques based on MCNP[J]. Nuclear Electronics & Detection Technology, 2015, **35**(2): 146 – 149. DOI: 10.3969/j.issn.0258-0934.2015.02.008.

- 12 胡波,杨奎,张文宇,等. 某铀矿勘查区的地气与放射性场研究[J]. 科学技术与工程, 2015, 15(26): 120 123.
 HU Bo, YANG Kui, ZHANG Wenyu, *et al.* The study of the gas and radioactive field in an uranium exploration area[J]. Science Technology and Engineering, 2015, 15 (26): 120 123.
- 13 吴德完.γ能谱双重定向辐射取样[J].核电子学与探测 技术, 1983, 3(1): 9 - 13.
 WU Dewan. Double oriented radiation sampling by γ -spectrum[J]. Nuclear Electronics & Detection Technology, 1983, 3(1): 9 - 13.
- 14 杨京科, 葛良全, 范晨, 等. 原位定向γ能谱测量方法[J].
 科学技术与工程, 2019, 19(17): 71 75. DOI: 10.3969/j.
 issn.1671-1815.2019.17.009.

YANG Jingke, GE Liangquan, FAN Chen, *et al. In-situ* directional gamma-ray spectrometry measure method[J]. Science Technology and Engineering, 2019, **19**(17): 71 – 75. DOI: 10.3969/j.issn.1671-1815.2019.17.009.

 15 王平, 刘庆成, 葛良全. 地球物理探测技术进展: 祝贺程 业勋教授八十周年华诞[M]. 北京: 地质出版社, 2012.
 WANG Ping, LIU Qingcheng, GE Liangquan. Progress in geophysical exploration technology: congratulations to professor Cheng yexun on his 80th birthday[M]. Beijing: Geological Publishing House, 2012.